Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Mhealth Uhealth ; 9(5): e23681, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33938809

RESUMO

BACKGROUND: Research has shown the feasibility of human activity recognition using wearable accelerometer devices. Different studies have used varying numbers and placements for data collection using sensors. OBJECTIVE: This study aims to compare accuracy performance between multiple and variable placements of accelerometer devices in categorizing the type of physical activity and corresponding energy expenditure in older adults. METHODS: In total, 93 participants (mean age 72.2 years, SD 7.1) completed a total of 32 activities of daily life in a laboratory setting. Activities were classified as sedentary versus nonsedentary, locomotion versus nonlocomotion, and lifestyle versus nonlifestyle activities (eg, leisure walk vs computer work). A portable metabolic unit was worn during each activity to measure metabolic equivalents (METs). Accelerometers were placed on 5 different body positions: wrist, hip, ankle, upper arm, and thigh. Accelerometer data from each body position and combinations of positions were used to develop random forest models to assess activity category recognition accuracy and MET estimation. RESULTS: Model performance for both MET estimation and activity category recognition were strengthened with the use of additional accelerometer devices. However, a single accelerometer on the ankle, upper arm, hip, thigh, or wrist had only a 0.03-0.09 MET increase in prediction error compared with wearing all 5 devices. Balanced accuracy showed similar trends with slight decreases in balanced accuracy for the detection of locomotion (balanced accuracy decrease range 0-0.01), sedentary (balanced accuracy decrease range 0.05-0.13), and lifestyle activities (balanced accuracy decrease range 0.04-0.08) compared with all 5 placements. The accuracy of recognizing activity categories increased with additional placements (accuracy decrease range 0.15-0.29). Notably, the hip was the best single body position for MET estimation and activity category recognition. CONCLUSIONS: Additional accelerometer devices slightly enhance activity recognition accuracy and MET estimation in older adults. However, given the extra burden of wearing additional devices, single accelerometers with appropriate placement appear to be sufficient for estimating energy expenditure and activity category recognition in older adults.


Assuntos
Acelerometria , Exercício Físico , Idoso , Metabolismo Energético , Atividades Humanas , Humanos , Punho
2.
J Meas Phys Behav ; 2(4): 268-281, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34308270

RESUMO

BACKGROUND: Physical behavior researchers using motion sensors often use acceleration summaries to visualize, clean, and interpret data. Such output is dependent on device specifications (e.g., dynamic range, sampling rate) and/or are proprietary, which invalidate cross-study comparison of findings when using different devices. This limits flexibility in selecting devices to measure physical activity, sedentary behavior, and sleep. PURPOSE: Develop an open-source, universal acceleration summary metric that accounts for discrepancies in raw data among research and consumer devices. METHODS: We used signal processing techniques to generate a Monitor-Independent Movement Summary unit (MIMS-unit) optimized to capture normal human motion. Methodological steps included raw signal harmonization to eliminate inter-device variability (e.g., dynamic g-range, sampling rate), bandpass filtering (0.2-5.0 Hz) to eliminate non-human movement, and signal aggregation to reduce data to simplify visualization and summarization. We examined the consistency of MIMS-units using orbital shaker testing on eight accelerometers with varying dynamic range (±2 to ±8 g) and sampling rates (20-100 Hz), and human data (N = 60) from an ActiGraph GT9X. RESULTS: During shaker testing, MIMS-units yielded lower between-device coefficient of variations than proprietary ActiGraph and ENMO acceleration summaries. Unlike the widely used ActiGraph activity counts, MIMS-units were sensitive in detecting subtle wrist movements during sedentary behaviors. CONCLUSIONS: Open-source MIMS-units may provide a means to summarize high-resolution raw data in a device-independent manner, thereby increasing standardization of data cleaning and analytical procedures to estimate selected attributes of physical behavior across studies.

3.
JMIR Med Inform ; 6(4): e46, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348634

RESUMO

BACKGROUND: Capturing and Analyzing Sensor and Self-Report Data for Clinicians and Researchers (COMPASS) is an electronic health (eHealth) platform designed to improve cancer care delivery through passive monitoring of patients' health status and delivering customizable reports to clinicians. Based on data from sensors and context-driven administration of patient-reported outcome (PRO) measures, key indices of patients' functional status can be collected between regular clinic visits, supporting clinicians in the delivery of patient care. OBJECTIVE: The first phase of this project aimed to systematically collect input from oncology providers and patients on potential clinical applications for COMPASS to refine the system. METHODS: Ten clinicians representing various oncology specialties and disciplines completed semi-structured interviews designed to solicit clinician input on how COMPASS can best support clinical care delivery. Three cancer patients tested a prototype of COMPASS for 7 days and provided feedback. Interview data were tabulated using thematic content analysis to identify the most clinically relevant objective and PRO domains. RESULTS: Thematic content analysis revealed that clinicians were most interested in monitoring vital statistics, symptoms, and functional status, including the physical activity level (n=9), weight (n=5), fatigue (n=9), sleep quality (n=8), and anxiety (n=7). Patients (2 in active treatment and 1 in remission) reported that they would use such a device, were enthusiastic about their clinicians monitoring their health status, especially the tracking of symptoms, and felt knowing their clinicians were monitoring and reviewing their health status provided valuable reassurance. Patients would, however, like to provide some context to their data. CONCLUSIONS: Clinicians and patients both articulated potential benefits of the COMPASS system in improving cancer care. From a clinician standpoint, data need to be easily interpretable and actionable. The fact that patients and clinicians both see potential value in eHealth systems suggests wider adoption and utilization could prove to be a useful tool for improving care delivery.

4.
Med Sci Sports Exerc ; 45(5): 964-75, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23247702

RESUMO

PURPOSE: Previously, the National Health and Examination Survey measured physical activity with an accelerometer worn on the hip for 7 d but recently changed the location of the monitor to the wrist. This study compared estimates of physical activity intensity and type with an accelerometer on the hip versus the wrist. METHODS: Healthy adults (n = 37) wore triaxial accelerometers (Wockets) on the hip and dominant wrist along with a portable metabolic unit to measure energy expenditure during 20 activities. Motion summary counts were created, and receiver operating characteristic (ROC) curves were then used to determine sedentary and activity intensity thresholds. Ambulatory activities were separated from other activities using the coefficient of variation of the counts. Mixed-model predictions were used to estimate activity intensity. RESULTS: The ROC for determining sedentary behavior had greater sensitivity and specificity (71% and 96%) at the hip than at the wrist (53% and 76%), as did the ROC for moderate- to vigorous-intensity physical activity on the hip (70% and 83%) versus the wrist (30% and 69%). The ROC for the coefficient of variation associated with ambulation had a larger AUC at the hip compared to the wrist (0.83 and 0.74). The prediction model for activity energy expenditure resulted in an average difference of 0.55 ± 0.55 METs on the hip and 0.82 ± 0.93 METs on the wrist. CONCLUSIONS: Methods frequently used for estimating activity energy expenditure and identifying activity intensity thresholds from an accelerometer on the hip generally do better than similar data from an accelerometer on the wrist. Accurately identifying sedentary behavior from a lack of wrist motion presents significant challenges.


Assuntos
Acelerometria/métodos , Atividade Motora , Acelerometria/instrumentação , Adolescente , Adulto , Idoso , Metabolismo Energético , Desenho de Equipamento , Feminino , Quadril , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Comportamento Sedentário , Punho , Adulto Jovem
5.
J Autism Dev Disord ; 41(6): 770-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20839042

RESUMO

To overcome problems with traditional methods for measuring stereotypical motor movements in persons with Autism Spectrum Disorders (ASD), we evaluated the use of wireless three-axis accelerometers and pattern recognition algorithms to automatically detect body rocking and hand flapping in children with ASD. Findings revealed that, on average, pattern recognition algorithms correctly identified approximately 90% of stereotypical motor movements repeatedly observed in both laboratory and classroom settings. Precise and efficient recording of stereotypical motor movements could enable researchers and clinicians to systematically study what functional relations exist between these behaviors and specific antecedents and consequences. These measures could also facilitate efficacy studies of behavioral and pharmacologic interventions intended to replace or decrease the incidence or severity of stereotypical motor movements.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Transtornos Globais do Desenvolvimento Infantil/psicologia , Movimento , Reconhecimento Automatizado de Padrão/métodos , Comportamento Estereotipado , Adolescente , Algoritmos , Criança , Humanos , Masculino , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-22255127

RESUMO

This paper describes the motivation for, and overarching design of, an open-source hardware and software system to enable population-scale, longitudinal measurement of physical activity and sedentary behavior using common mobile phones. The "Wockets" data collection system permits researchers to collect raw motion data from participants who wear multiple small, comfortable sensors for 24 hours per day, including during sleep, and monitor data collection remotely.


Assuntos
Aceleração , Telefone Celular , Monitoramento Ambiental/instrumentação , Atividade Motora , Humanos
7.
Proc ACM Int Conf Ubiquitous Comput ; 2010: 311-320, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30191204

RESUMO

Accurate, real-time measurement of energy expended during everyday activities would enable development of novel health monitoring and wellness technologies. A technique using three miniature wearable accelerometers is presented that improves upon state-of-the-art energy expenditure (EE) estimation. On a dataset acquired from 24 subjects performing gym and household activities, we demonstrate how knowledge of activity type, which can be automatically inferred from the accelerometer data, can improve EE estimates by more than 15% when compared to the best estimates from other methods.

8.
Artigo em Inglês | MEDLINE | ID: mdl-19964448

RESUMO

Recent research in ubiquitous and mobile computing uses mobile phones and wearable accelerometers to monitor individuals' physical activities for personalized and proactive health care. The goal of this project is to measure and reduce the energy demand placed on mobile phones that monitor individuals' physical activities for extended periods of time with limited access to battery recharging and mobile phone reception. Many issues must be addressed before mobile phones become a viable platform for remote health monitoring, including: security, reliability, privacy, and, most importantly, energy. Mobile phones are battery-operated, making energy a critical resource that must be carefully managed to ensure the longest running time before the battery is depleted. In a sense, all other issues are secondary, since the mobile phone will simply not function without energy. In this project, we therefore focus on understanding the energy consumption of a mobile phone that runs MIT wockets, physical activity monitoring applications, and consider ways to reduce its energy consumption.


Assuntos
Telefone Celular/instrumentação , Conservação de Recursos Energéticos/métodos , Fontes de Energia Elétrica/estatística & dados numéricos , Eletricidade , Monitorização Ambulatorial/instrumentação , Fontes de Energia Elétrica/economia , Humanos , Monitorização Ambulatorial/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...